当前位置:龙泉人才网 - 人才百科 -

瑞利来(阿尔伯特)

  • 人才百科
  • 2023-11-18 13:00
  • 龙泉小编

阿尔伯特·爱因斯坦(1879年3月14日-1955年4月18日),是出生于德国、拥有瑞士美国国籍犹太理论物理学家,他创立了现代物理学的两大支柱的相对论量子力学,也是质能等价公式E = mc2)的发现者。他在科学哲学领域颇具影响力。因为“对理论物理的贡献,特别是发现了光电效应的原理”,他荣获1921年度的诺贝尔物理学奖(1922年颁发)。这一发现为量子理论的建立踏出了关键性的一步。

爱因斯坦在职业生涯早期就发觉经典力学与电磁场无法相互共存,因而发展出狭义相对论。他又发现,相对论原理可以延伸至重力场的建模。根据研究出来的一些重力理论,他于1915年发表了广义相对论。他持续研究统计力学与量子理论,这让他给出了粒子论与对于分子运动的解释。1917年,爱因斯坦应用广义相对论来建立大尺度结构宇宙的模型。

阿道夫·希特勒于1933年开始掌权成为德国总理之时,爱因斯坦正在走访美国。由

爱因斯坦与第二任妻子爱尔莎

于爱因斯坦是犹太裔人,所以尽管身为普鲁士科学院教授,他并没有返回德国。1940年,他定居美国,随后成为美国公民。在第二次世界大战前夕,他在一封写给当时美国总统富兰克林·罗斯福的信里署名,信内提到德国可能发展出一种新式且深具威力的炸弹,因此建议美国也尽早进行相关研究,美国因此开启了曼哈顿计划。爱因斯坦支持增强同盟国的武力,但谴责将当时新发现的核裂变用于武器用途的想法,后来爱因斯坦与英国哲学家伯特兰·罗素共同签署《罗素—爱因斯坦宣言》,强调核武器的危险性。

爱因斯坦是20世纪最重要的科学家之一,一生总共发表了300多篇科学论文和150篇非科学作品,有“现代物理学之父”之誉。他卓越和原创性的科学成就使得“爱因斯坦”一词成为“天才”的同义词。

早年生活与教育

1879年3月14日,爱因斯坦出生在德意志帝国符腾堡王国乌尔姆的一个世俗阿什肯纳兹犹太人家庭。父亲赫尔曼当过销售员和工程师;母亲宝琳·柯克从小受到良好教育,钢琴造诣深厚。1880年,举家迁往慕尼黑,爱因斯坦的父亲与叔叔在那里经营一间电气公司,专门设计与制造直流电器。爱因斯坦一家是不遵循犹太教规的阿什肯纳兹犹太人。爱因斯坦学习说话的速度比较缓慢,父母因此很担心,甚至曾经找过医生看诊。

学术生涯

爱因斯坦最早于1900年已在极具权威性的德国《物理年鉴》发表论文《毛细现象的结论》,由于这篇论文的基本猜测并不正确,其对于日后物理学的发展并没有给出任何实质贡献。那年,他决定继续攻读博士学位,由于苏黎世联邦理工学院并不提供物理博士学位,他必须通过特别安排从苏黎世大学得到博士学位。隔年,他成为苏黎世大学实验物理学教授阿尔弗雷德·克莱纳的博士学生。那年11月,他写完了初版的博士论文,但克莱纳并不满意这论文,特别是爱因斯坦在论文里对于其它科学权威的攻击。经过努力改善,1905年,他的博士论文《分子大小的新测定法》终获接受,他可以得到博士学位。同年,他发表了关于光电效应、布朗运动、狭义相对论、质量和能量关系的四篇论文,在物理学的四个不同领域中取得了历史性成就。该年被后人称为“爱因斯坦奇迹年”。

到了1908年,爱因斯坦已被公认为物理学领域的顶尖学者,伯尔尼大学聘请他为讲师,但由于薪俸微薄,他仍需继续在专利局工作。隔年,苏黎世大学新设立了一个理论物理学副教授席位,克莱纳很想让爱因斯坦专任这份工作,可是克莱纳很不欣赏爱因斯坦的教学风格,他讲课时会长时间独白,并且缺乏条理,爱因斯坦只好提议,在苏黎世的物理学会开一场讲课,请克莱纳再评估一次。经过精心准备,爱因斯坦的讲课获得好评,克莱纳于是向苏黎世大学推荐爱因斯坦,“自从他在相对论的成就之后,他已是最重要的理论物理学者之一……爱因斯坦博士会证实他也是一位教师,因为他的才智与良心会在必要时间促使他接受建议”。爱因斯坦成为苏黎世大学的理论物理学副教授,他辞去了专利局工作。

那时期,布拉格查理大学正在努力招募年轻物理人才,在名望与薪资的双重吸引下,爱因斯坦1911年转任这所大学的教授,同时获准成为奥匈帝国的公民。任职期间,他共撰写了11篇科学论文,其中5篇论述辐射数学与固体量子理论。1912年7月,他又回到母校苏黎世联邦理工学院担任理论物理学教授,主要是教导分析力学与热力学,在学术研究方面,他专注于引力问题,与数学家朋友马塞尔·格罗斯曼共同尝试找到解答,突破似乎在望,但真正严格表述还要等待几年。

应马克斯·普朗克和瓦尔特·能斯特的邀请,爱因斯坦于1914年回到德国担任威廉皇家物理研究所的第一任所长(1914-1932)兼柏林大学教授,而且不需要在课堂担任教职。很快地,他当选为普鲁士科学院院士。1916年,又获选为德国物理学会的会长(1916-1918)。

爱因斯坦于1915年发表了广义相对论。根据这理论,他预言,光线经过太阳引力场时会被弯曲。1919年,这预言由英国天文学家亚瑟·爱丁顿观测1919年5月29日日食的结果所证实。全世界的很多新闻媒体都以头版报导这惊人的观测结果,爱因斯坦因此成为家喻户晓的物理学者,同年11月7日,英国泰晤士报的头条新闻标题宣告,“科学革命,宇宙新理论已将牛顿绘景推翻”。

1917年,爱因斯坦在《论辐射的量子性》一文中提出了受激辐射理论,开创了激光学术领域。

由于在光电效应方面的研究成果,爱因斯坦获授予1921年度的诺贝尔物理学奖(延后颁发一年,1922年才获奖)。在瑞典科学院的公告中并未提及相对论,原因是相对论被认为仍旧存在争议。

普林斯顿岁月

1933年1月,纳粹党攫取德国政权,希特勒成为德国总理。那时,爱因斯坦正在美国,由于纳粹党鼓吹反犹太主义,爱因斯坦知道他无法返回德国。3月,爱因斯坦与妻子爱尔莎坐船来到比利时。途中,爱因斯坦获知,纳粹借口闯入了他的暑假小屋,又没收了他的心爱小船。抵达安特卫普后,他立刻到德国大使馆缴回护照,并且宣布再度放弃德国国籍,他又向普鲁士科学院提出辞呈,他在辞呈里表示,“就目前情势来看,他觉得无法忍受倚赖普鲁士政府。”

回到美国后,10月,爱因斯坦成为普林斯顿高等研究院的常驻教授,他此后有生之年,几乎都在这里度过,他再也没有踏上欧洲一步。除了爱因斯坦以外,奥斯瓦尔德·维布伦、约翰·冯·诺伊曼、库尔特·哥德尔与赫尔曼·外尔等等世界级学者也都获聘来到这里做研究。爱因斯坦与哥德尔成为忘年之交,他们每天都会一起走路到研究室工作,途中顺便讨论一些科学问题。爱因斯坦本性幽默,很喜欢开玩笑,而严肃的哥德尔则疑心很重,时常忧虑、郁闷。爱因斯坦极力主张量子力学的不完备性,哥德尔的不完备定理则是现代逻辑学的重要里程碑。在某些方面,他们很像对方,他们都有“打破砂锅问到底”的习性,想要找到问题的症结所在。

在这段时期,爱因斯坦尝试发展出统一场理论,驳斥量子物理的哥本哈根诠释,但都没有获得重大突破,他逐渐地与物理研究的主流趋势脱节。

二战和曼哈顿工程

在1939年,包括利奥·西拉德、爱德华·泰勒、尤金·维格纳在内的一群流亡物理学者试图警告美国政府,揭露纳粹德国正在进行的原子弹研究;他们把警告美国人民视为己任:德国科学家也许会赢得制造原子弹竞赛的胜利;希特勒会毫不犹豫地使用这种武器。为了要让美国警觉到原子弹的巨大威胁,他们曾拜访爱因斯坦,告诉他杀伤力超强的原子弹可能在不久的将来被制成。

爱因斯坦支持和平主义,他正在专心研究统一场理论,并不清楚核子研究的最新发展,他从未想到这项技术的进展会如此快速。爱因斯坦被说服借助其崇高声望和西拉德写信给美国总统富兰克林·罗斯福。他们还建议美国政府注重并直接介入核武器研究。这封信被认为是,美国在参与二战前夕,展开大规模核武器研究的关键激励因素。罗斯福不能冒险让希特勒抢先掌握原子弹技术。由于爱因斯坦的信件,美国加入研制原子弹竞赛,依托其巨大的材料、金融、科学资源展开曼哈顿计划,成为在二战中唯一成功研制出原子弹的国家。

对爱因斯坦而言,“战争是一种疾病……他呼吁抵抗战争”。写给罗斯福的那封信违反了爱因斯坦所支持的和平主义。在过世之前一年,爱因斯坦对老朋友莱纳斯·鲍林说:“我一生之中犯了一个巨大的错误:我签署了那封要求罗斯福总统制造核武器的信。但是犯这错误是有原因的:德国人制造核武器的危险是存在的。”

离世

爱因斯坦69岁时被诊断出患有腹主动脉瘤,著名肠胃科权威医生鲁道夫·尼森是他的开刀医生,他用玻璃纸紧紧包住葡萄柚尺寸的瘤,试图促使血管纤维化,降低破裂的风险。爱因斯坦可能因此手术多活了几年。

1955年4月13日,爱因斯坦的腹主动脉瘤破裂,引起内出血。他正在撰写的一篇庆祝以色列建国7周年的电视讲稿,还没有写完,就于18日过世,享寿76岁。在那时代,动手术治疗在技术上成功率很高,纽约医院的医生弗兰克·格伦(Frank Glenn)建议立刻动手术治疗,但爱因斯坦坚决拒绝,他表示:“当我想要离去的时候请让我离去,一味地延长生命是毫无意义的。我已经完成了我该做的。现在是该离去的时候了,我要优雅地离去。”

然而,病理学家托马斯·哈维医生在验尸过程中未经爱因斯坦的家人允许就私自取下爱因斯坦的大脑并自行保存,他希望未来神经科学研究能够发现爱因斯坦那么聪明的原因。至于身体的其它部分遵照爱因斯坦的遗嘱在他过世当天就火化,只有包括他儿子汉斯在内的12人在场参与简单的仪式。在遗体火化后,将其骨灰全都撒在附近的特拉华河里。

主要科学成就

爱因斯坦一生发表了很多书籍与论文。除此以外,他还与很多科学家合作贡献出许多重要结果。

奇迹年论文

爱因斯坦于1905年在《物理年鉴》发表了四篇划时代的论文。从来没有人能在这么短暂的时间内对于现代物理给出这么多重大贡献。这一年因此被称为“爱因斯坦奇迹年”。这四篇论文分别为:

标题

专注领域

收件日期

发表日期

重要性

关于光的产生和转变的一个启发性观点

光电效应

3月18日

6月9日

提出光量子假说,即光是由离散的能量粒子(光量子)所组成。这假说关键性地促成了量子力学的早期发展,首先揭示了微观世界的基本特征:波粒二象性。

热的分子运动论所要求的静止液体中悬浮粒子的运动

布朗运动

5月11日

7月18日

论述怎样证实原子的物理实在,创建涨落现象研究领域,对于在那时尚具争议性的统计物理学给予强力支持、为随机过程理论的未来发展铺路。

论运动物体的电动力学

狭义相对论

6月30日

9月26日

改变旧有的时间与空间的观念,化解麦克斯韦方程组与经典力学定律之间的矛盾,说明以太的概念是多余无用的。

物体的惯性同它所含的能量有关吗

质能等价

9月27日

11月21日

表述物质与能量等价E = mc2(这意味着引力可以弯曲光束)、粒子的静止能量、核能的理论根据。

相对论和爱因斯坦质能方程

爱因斯坦在论文《论运动物体的电动力学》里提出了狭义相对论的两个基本公设:“光速不变”,以及“相对性原理”,按照这两个基本公设对于经典力学在运动速度接近光速时做出一些重要修正,从而化解了麦克斯韦方程组与经典力学定律之间的矛盾。经过整理之后,这些创举成为爱因斯坦的狭义相对论。

承认时空的相对性与光速的不变性导致了几个必然的推论。一是运动物体在其运动方向会表现出长度收缩。二是运动物体会经历时间膨胀。也就是说,一个运动中的钟表要比静止的同样钟表走得慢。三是以太的概念其实是多余无用的。

爱因斯坦在表述质能等价的论文里,从狭义相对论的方程里推导出质能方程E = mc2。这意味着能量和质量其实是一回事,可以相互转换。对于任何物体来说,其质量会随着其速度的增加而增加。

爱因斯坦的相对论曾经有很多年备受争议,他获得1921年诺贝尔物理学奖并不是因为表扬他在相对论做出重大贡献。普朗克是最热烈支持相对论的物理学者之一。

光子与能量量子

主条目:光子和光电效应在论文《关于光的产生和转变的一个启发性观点》里,爱因斯坦提出光量子假说,即光是由离散的能量量子组成,这能量量子称为光量子,后来被简称为光子。最初,光量子假说遭到物理学者强烈质疑,其中包括马克斯·普朗克以及尼尔斯·玻尔。后来,罗伯特·密立根做实验证实了光电效应的方程,阿瑟·康普顿做康普顿散射实验展示在某种情况下光会表现出粒子性。直到1919年,光量子假说才被广为接受。

爱因斯坦得到了一个结论,频率为f的光束是由能量为hf的光量子所组成;其中,h为普朗克常数。爱因斯坦并没有对这结论给出很多解释,实际而言,他并不确定光量子与光波之间的关系。但是,他的确建议这点子能够解释某些实验结果,尤其是光电效应。

量子化原子振动

在1906年论文《普朗克的辐射理论和比热容理论》里,爱因斯坦提出一种新的描述物质的物理模型,称为爱因斯坦模型。在这模型里,位于晶格结构里的每一个原子都被视为一个独立的量子谐振子,它们各自以相同频率像弹簧一样做简谐振动,因此具有离散的能级。杜隆-珀蒂定律预言比热容为常数,在高温极限时,这模型给出相同的理论结果;而当温度趋于零时,这模型预言比热容也趋于零,与实验结果相符合。这是20世纪初期第三个被发现的重要量子理论。

爱因斯坦模型预言比热容以温度的指数函数趋于零,这是因为它假设所有谐振子的振动频率相同。彼得·德拜对于这假设给予修正,在他研究出的德拜模型里,振动频率不一样,因此比热容以温度的立方函数趋于零。

波粒二象性

在爱因斯坦的光量子假说中,光量子只是表现出能量的不连续性,它尚未被赋予粒子应具有的性质,所以不能被严格视为粒子。1909年,在爱因斯坦发表的两篇论文《论辐射问题的现状》与《论我们关于辐射的本性和组成的观点的发展》里,爱因斯坦阐明,光量子具有良好定义的动量,并且在某些方面表现出类点粒子的物理行为。这两篇论文引入了光子的概念(吉尔伯特·路易斯于1926年给出术语光子的命名),启发了量子力学的波粒二象性观念。他又表示,理论物理下一个阶段将会发展出一种能够将光的波动论与光的粒子论融合在一起的理论。在这里,“融合”意味着波粒二象性,或更加延伸,尼尔斯·玻尔后来提出的互补原理。

临界乳光理论

在临界点附近,照射于介质的光束会被介质强烈散射,这现象称为临界乳光。波兰物理学者马里安·斯茅鲁樵斯基于1908年首先表明,临界乳光的机制为介质密度涨落,他并没有给出相关的方程。两年后,爱因斯坦应用统计力学严格论述介质的分子结构所形成的密度涨落,从而推导出相关的方程,并且用这方程给出另一种计算阿伏伽德罗常数的方法,更有意思的是,这临界乳光的机制可以解释天空呈蓝色的现象。

按照瑞利散射理论,瑞利散射光的辐照度和入射光波长的四次方成反比。应用瑞利散射来解释天空的蓝色现象,波长较短的蓝光比波长较长的红光更易产生瑞利散射。因此,天空的颜色是蓝色的。瑞利散射方程能够准确地描述光束对于气体的瑞利散射行为,但对于液体并不适用。爱因斯坦的临界乳光理论更一般地适用于液体与气体;瑞利散射只是临界乳光问题的一个特别案例。后来,布鲁诺·齐姆分析粒子在气体与液体里的随机性,将瑞利散射理论加以延伸来描述光在液体里的散射行为。

零点能

零点能指的是量子系统处于基态时所拥有的能量,量子系统所拥有能量不能低于零点能。普朗克于1911年至1913年之间重新表述他的1900年量子理论时提出了零点能的概念。

爱因斯坦和助手奥托·施特恩对于这点子极感兴趣。他们研究出一种方法,能够证实零点能的存在。他们假设双原子分子的旋转能含有零点能,并且所有双原子分子以同样角速度旋转,然后计算出双原子分子气体的比热容。他们在1913年论文《对于分子在绝对零度下的扰动假设的某些论证》里,将氢气的理论比热容与实验数据相互比较,他们总结,零点可能存在。

虽然这计算结果很漂亮地符合实验数据,不久之后,他们又撤回了这篇论文,主要原因是保罗·埃伦费斯特给出更具一般性的计算,从假设双原子分子以某种统计分布的角速度进行旋转,并且遵守普朗克的量子理论,他计算出与实验数据相符合的理论结果,因此他总结,零点能不存在。一直到1925年,零点能的存在才被维尔纳·海森堡在他的著名论文《运动与机械关系的量子理论重新诠释》里理论证实。

广义相对论

爱因斯坦在1907-1915年间创建的广义相对论是一种引力理论。根据广义相对论,在质量与质量之间观测到的引力是源自于这些质量所造成的时空弯曲。在现代天文物理学里,广义相对论是重要工具。

在接受1921年诺贝尔物理奖的演讲时,爱因斯坦表示狭义相对论对于惯性运动的偏好并不令人满意,而从最开始就不偏好任何运动状态(不论是匀速运动或加速度运动)的理论,应该会显得更令人满意,因此他才会尝试发展广义相对论[69]。他在1907年论文《关于相对性原理和由此得出的结论》里指出,自由下落实际是一种惯性运动,对于自由下落的观察者而言,狭义相对论的规则应该适用。爱因斯坦并没有对这后来被称为等效原理的论题给出详尽分析。另外,他还初步预言重力红移,即射入引力势阱中的光会发生蓝移,而相反从引力势阱中射出的光会发生红移;又粗略预言光线在重力场中的偏折,即光子的路径在引力场中会发生偏折。这些预言后来纷纷得到了实验验证。

爱因斯坦将1907年论文加以扩充,于1911年写成论文《论重力对光的传播的影响》;在这篇论文里,他对光线在重力场中的偏折重新加以详细分析,得到可以严格测试的结果,即光线经过太阳产生的引力场时被偏折的角度。这预言可以做实验严格检试,因此他呼吁实验者的关注,尽快完成这实验。

经过多年思考引力的内秉性质,爱因斯坦领悟到引力可以定义为时空的弯曲,对于引力的详细描述必须用到几何,更甚言之,几何是发现引力定律的重要工具,因此,他找到大学同学马塞尔·格罗斯曼来帮助他解决数学方面的问题。格罗斯曼建议他使用黎曼几何,因为黎曼张量与从其衍伸的里奇张量都具有广义协变性。1913年他与格罗斯曼共同发表了论文《广义相对论和引力理论纲要》。在这篇论文里,他们给出的场方程很像后来的爱因斯坦场方程,但具有非常有限的协变性,这场方程后来被称为“草稿场方程”。

1915年11月,爱因斯坦一连串发表了四篇关于广义相对论的论文。第三篇论文《用广义相对论解释水星近日点运动》详细分析水星的反常进动现象,所得到的理论数值与实验数据完全符合,并且还修改先前对于光子路径在引力场中发生的偏折所做的估算,这修正后来也成功通过实验检试。第四篇论文《引力场方程》终于给出具有广义协变性的场方程,后来称为爱因斯坦场方程,这方程能够描述引力场和物质彼此之间的相互作用。如同约翰·惠勒所说,物质告诉时空怎样弯曲,空间告诉物质怎样移动。在弱引力场的状况下,爱因斯坦场方程必须与牛顿万有引力定律相互啮合,而在零引力场的状况下,爱因斯坦场方程又必须与狭义相对论相互啮合。这两个条件几乎决定了爱因斯坦场方程的形式,也是爱因斯坦给出爱因斯坦场方程的关键概念。

引力波

引力波是时空曲率的涟漪以波动的形式从波源向外传播,同时会有能量向外传输。1916年,爱因斯坦预言了引力波的存在,根据广义相对论,洛伦兹不变性使得引力波的存在成为可能,由于引力相互作用必须以有限速度传播于空间。但根据牛顿万有引力定律无法得到这种结果,因其假定引力相互作用是以无穷高速度传播于空间。

普林斯顿大学物理学家拉塞尔·赫尔斯和约瑟夫·泰勒于1974年发现首个脉冲双星系统PSR B1913+16,通过对其深入研究,首次发现引力波存在的间接定量证据。2016年2月11日,正好在爱因斯坦预言发表100年之后,LIGO团队宣布,已直接探测到引力波,其源头来自于双黑洞融合机制。

宇宙学

全新装备了功能超强的广义相对论,爱因斯坦已准备好在梦寐以求的宇宙学领域大展身手。1917年,他应用广义相对论来建模整个宇宙结构。从那时的实验观测推论,他认为宇宙的范围是有限,并且不具有任何边界,因为宇宙质量会使时空弯曲回自己,就如同圆球的表面,具有有限的面积,不具有任何边界。这种宇宙称为静态宇宙。但是,根据爱因斯坦场方程,静态宇宙不可能存在,宇宙只能扩张或收缩。为了使宇宙保持静态,爱因斯坦在他的方程中加入了一个宇宙常数项,然后让宇宙常数项与宇宙质量项相互抵销,这样,宇宙常数可以抗拒引力的效应,从而实现静态宇宙。然而,爱德文·哈勃于1929年确定宇宙呈膨胀状态。爱因斯坦只好放弃宇宙常数,他认为在引力方程中引入该常数是他“一生中最大的错误”。

后来,人们发现宇宙加速膨胀,这现象的最简单说法是宇宙常数不为零,而是一个很小的数值10−52 m−2。爱因斯坦的直觉最终可能还是正确的。

玻色-爱因斯坦统计

参见:玻色-爱因斯坦凝聚

印度物理学者萨特延德拉·玻色在1923年完成论文《普朗克定律与光量子假说》,并且将这篇论文寄给英国《哲学杂志》,但是遭到拒绝发表。玻色丝毫不因此气馁,隔年他又将该论文转寄给爱因斯坦,寻求爱因斯坦的意见。在这篇论文里,玻色提出一种新的统计模型,按照这模型,光束可以被视为由一群无法分辨的粒子所组成气体,因此在做统计运算时,所有相同能量的光子应该合并处理。爱因斯坦注意到玻色的统计模型不仅适用于光子,还适用于很多其它种粒子,这些粒子后来被称为玻色子。爱因斯坦把玻色的论文翻译成德文后发表于德国的《物理期刊》(Zeitschrift für Physik)。

爱因斯坦将玻色的理论推广至带质量的粒子,于1924年发表论文《单原子理想气体的量子理论》,隔年,又发表论文预言,玻色子冷却至非常低温时,会凝聚到其能量最低的量子态,因此会出现一种新的物态,称为玻色-爱因斯坦凝聚态。1995年,科罗拉多大学波德分校的埃里克·康奈尔和卡尔·威曼使用铷原子气体在170 nK(1.7×10−7 K)的低温下首次观测到了玻色-爱因斯坦凝聚[83]。四个月后,麻省理工学院的沃尔夫冈·克特勒使用钠原子气体独立实现了玻色-爱因斯坦凝聚。

免责声明:本文内容来源于网络或用户投稿,龙泉人才网仅提供信息存储空间服务,不承担相关法律责任。若收录文章侵犯到您的权益/违法违规的内容,可请联系我们删除。
https://www.lqrc.cn/a/rencai/79540.html

  • 关注微信

猜你喜欢

微信公众号