精细化运营几乎是当下每个企业都在做的事情,希望利用数据价值的挖掘和利用,提升运营的ROI,降本提效。
用户分层运营的方式一是基于运营的业务经验,将运营场景抽象成标签规则进行人群圈选和触达营销,另一个就是利用算法模型进行人货场的智能匹配。这两种运营方式各有什么优劣势呢?
最近CDP平台新增了很多算法挖掘的标签,扩展了基于算法模型直接输出目标人群的场景,通过AB对比,算法圈选的目标人群的转化效果要好于运营基于经验、规则人工圈选的效果。
有同学不禁问道,既然基于算法的运营过程不需要运营介入,省去人工圈选的动作,可以输出更精准的人群,转化效果更好,那是不是基于算法的智能运营可以取代基于经验的业务规则运营呢?
针对这个问题,个人的思考总结分享给大家。
规则运营是指将业务精细化运营的场景需求,抽象成目标用户筛选的标签条件,利用CDP(或DMP)等精准营销平台或者数据开发数据加工进行用户圈选、营销触达。
举一个例子,我们都知道付费会员相比较一般用户复购概率、消费频次、平台忠诚度要相对较高(游戏人民币玩家和免费玩家的区别),各家电商平台都在建设自己的付费会员体系,如京东的Plus会员、携程的超级会员等。
会员运营的同学希望找到潜在的付费会员用户,进行开卡优惠的促销活动。所有用户都进行营销触达的粗放式运营的时代已经过去了,广撒网的弊端一是促销成本的投入,二是对用户过度打扰影响用户体验。
精准营销思想下,按照业务经验,认为目前下单频次较高、消费能力强,并且对品牌有一定认可程度的近期活跃用户更有可能转化付费会员。于是,该场景拆分成多个用户筛选的条件,例如品牌认可度可以利用有过分享行为来量化。
从上述案例可以看出,规则运营,需要具备良好的业务经验和一定的数据思维才能将目标用户识别条件标签化,主要特点如下:
优点:
缺点:
基于算法模型的精细化运营,主要是指利用各种机器学习的算法,对用户进行聚类或行为预测,进行人货场的精准匹配。最典型的例子是产品的千人千面的个性化推荐。
利用用户的画像信息、实时浏览行为数据等更多的特征维度,进行模型的训练,让模型具备学习的能力,当有新的用户访问产品时,可以预测用户偏好的产品。
机器学习的本质是让机器具备人一样的自学习能力。仍以高潜付费会员运营为例,智能化运营的流程是,需要先找到购买付费用户的特征,或者把业务经验标签维度作为模型的特征集,进行模型的训练。最终输出目标付费用户人群。
基于算法的智能化运营的特点如下:
优点:
缺点:
从以上关于两种运营方式的概念以及优缺点可以看出,算法模型是无法完全取代业务经验的输入的。主要的原因包括:
缺少业务经验输入的模型很难得到理想效果,过去做个一个火车票无票场景推荐机票、汽车票等联程方案的算法服务,在人工和算法版本持续AB的过程中,运营的人工方案则重点考虑中转站大小、以及当地用户的车站偏好、到达时间是白天还是黑夜等维度,进行排序干预。
算法模型虽然考虑中转的时长、价格等几十个特征对联乘方案进行排序,比如时长短、价格低的方案靠前,但分析发现算法推荐的结果转化率始终无法超越人工版本。运营的经验更多了考虑“人性”,在算法没有把业务经验作为模型的信息输入时,转化效果是很难超越人工版本的。
算法模型的人力开发成本、所需要的存储以及GPU计算成本远高于人工运营,对于一些可明确业务规则的场景,比如体验受损(投诉)用户的安抚、生日用户的关怀等场景,规则运营更方便和高效,杀鸡焉用牛刀。
针对冷启动的场景,依然需要运营规则的兜底方案,随着数据的不断积累,算法模型才能更好地发挥价值。
既然算法模型无法取代规则运营,现在强调数智化运营,这两者如何才能取长补短,相得益彰呢?
单一运营策略、业务流程运营、实时触景营销,经验为主,算法为辅。
例如,当用户浏览多个商品,都没有下单时,通过弹窗红包优惠券刺激用户下单,是比较容易将场景抽象成标签的,通过设定标签规则来圈选出符合条件的用户,命中了则触发营销策略。
此外,也可以配合使用一些算法挖掘类的标签,如价格敏感度(推荐红包金额),在做更进一步的差异化运营。
用户偏好类、行为预测类,运营策略多样化场景,算法为主,经验为辅。
人民网曾经发文讲到“有用户不胜广告弹屏的干扰,无法安心买票”。这里面反映的问题就是对用户偏好信息的挖掘。运营经验更多的是只要符合其条件的用户就出发红包弹屏,经验没法做到对每个用户的差别对待。
算法模型,则可以预测每个用户对不同营销手段的接受程度,有些用户每次看到弹屏都会关闭,但是更喜欢短信的触达方式。
因此,对于多种策略、或多个产品候选集时,基于算法模型的运营转化效果、用户体验会更好一些。
数智化运营是趋势,但是要以具体的业务场景出发去选择,不能一味追求高大上的算法模型,而忽略业务经验的输入。基于业务经验的规则运营和基于算法模型的智能化运营要充分结合,才能取长补短,相互成就。
数据干饭人,微信号公众号:数据干饭人,人人都是产品经理专栏作家。专注数据中台产品领域,覆盖开发套件,数据资产与数据治理,BI与数据可视化,精准营销平台等数据产品。擅长大数据解决方案规划与产品方案设计。
本文原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议